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1. Perfusion imaging to detect myocardial ischemia 
 Myocardial ischemia occurs when insufficient blood flow, or perfusion, to the 
myocardium results in inadequate delivery of oxygen as well as inadequate removal of 
metabolites. These conditions may occur at rest due to insufficient oxygen supply (supply 
ischemia) or at stress due to a failure to sufficiently accommodate increased oxygen 
demand (demand ischemia). Coronary artery stenosis is a common cause of insufficient 
myocardial perfusion reserve and demand ischemia, with clinical symptoms typically 
appearing as angina and ST segment deviation on ECG predominantly at stress.  
Noninvasive imaging of perfusion defects at stress is widely used for the detection of 
significant coronary stenoses. 
 Numerous imaging modalities can be used to detect myocardial ischemia by 
perfusion assessment.  The most widely used myocardial perfusion modality is SPECT 
imaging with 201TI or 99mTc-labeled agents, which are radiotracers that are rapidly taken 
up by and slowly cleared from the myocardium after intravenous administration.  While 
SPECT is the standard clinical test for myocardial perfusion imaging (1), limitations of 
this technique include attenuation artifacts from soft tissue and relatively low spatial 
resolution.  PET imaging with 13N-labeled ammonia or 15O-labeled water are more 
accurate (2;3), however these methods are also more expensive and are not widely 
available.  Myocardial contrast echocardiography (MCE) can also be used for myocardial 
perfusion imaging (4), but this technique is not yet widely established and can be limited 
by poor acoustic windows. MRI offers several different methods for imaging myocardial 
perfusion, including first-pass contrast-enhanced imaging, blood oxygen level dependent 
(BOLD) imaging, and, in small animal models, arterial spin labeling (ASL).  BOLD and 
ASL have the advantages that they do not require the use of exogenous contrast media, 
however they are still in the early stages of development and evaluation.   
 
2. First-pass MRI 

First-pass contrast-enhanced imaging is the most popular of the MRI methods for 
myocardial perfusion assessment.  First-pass imaging was initially developed in the late 
1980’s, and is a tracer kinetic method based on using rapid T1-weighted imaging to 
detect the first passage of a T1-shortening contrast agent (Gd-DTPA) bolus as it flows 
through the left ventricular cavity and myocardial microcirculation (5).  Example images 
demonstrating first-pass MRI in a normal subject are shown in Figure 1, where the arrival 
of contrast media in the right ventricle, lungs, left ventricular cavity, and left ventricular 
myocardium can be seen as a function of time. The spatial resolution of first-pass MRI is 
seen to be relatively high, and can distinguish transmural differences in perfusion.  Time-
intensity curves for the left ventricle (LV) cavity, normal myocardium, and ischemic 
myocardium from a patient with coronary artery disease are shown in Figure 2. 
 For the clinical application of ischemia detection in patients with suspected 
coronary artery stenoses, first-pass MRI is typically applied both during pharmacological 
vasodilation (stress) and at rest.  The detection of stress-induced demand ischemia 



appears as a lack of contrast enhancement in the territory supplied by a stenosed artery in 
first-pass images acquired during adenosine or dypiridamole infusion (Figure 2, arrow).  
It is important to realize, however, that stress-induced demand ischemia is not the only 
potential cause of a lack of contrast enhancement. This finding could also appear due to 
myocardial infarction or artifact, and the differential is usually clarified by the acquisition 
of additional non-stress (rest) first-pass images and by also acquiring inversion-recovery 
images to detect delayed hyperenhancement.  With myocardial infarction, lack of contrast 
enhancement is seen at rest on first-pass images and delayed hyperenhancement is seen 
on inversion recovery images.  With artifact, lack of contrast enhancement is seen at rest 
on first-pass images however delayed hyperenhancement is not seen on inversion 
recovery images.  For true demand ischemia, lack of contrast enhancement is seen at 
stress on first-pass images but not at rest, and delayed hyperenhancement is not seen on 
inversion recovery images. 
 
3. Pulse sequences for first-pass MRI 
 While first-pass MRI has been under development and optimization for more than 
15 years, some technical issues such as optimal pulse sequence and how and whether to 
quantitatively analyze the images are still the subject of active investigation.  Regarding 
the optimal pulse sequence, saturation-recovery fast gradient echo (also referred to as 
TurboFLASH) is the most widely used technique (6).  However, hybrid fast gradient 
echo – echo planar imaging (GRE-EPI) sequences (7;8) acquire data more rapidly and 
steady state free precession (SSFP) sequences (9) generate greater contrast.  The 
importance of rapid data acquisition is that greater slice coverage is enabled and less 
cardiac motion occurs during the data acquisition period.  Also, fat suppression is more 
effective for shorter data acquisition periods.  The importance of greater image contrast 
could be higher sensitivity for detecting perfusion defects, although this is yet to be 
shown clinically.  Interestingly, recent studies attempting to clarify the pulse sequence 
question have reported conflicting results, with one study in patients with coronary artery 
disease favoring GRE-EPI (10) and another study in volunteers favoring SSFP (11).  
Furthermore, all of the sequences continue to evolve particularly with the advent of 
parallel imaging. 
 
4. Quantitative analysis of first-pass MRI 
 The importance and practicality of quantitatively analyzing first-pass images is 
also the subject of debate, although recent studies support the benefit of quantitative 
analysis versus visual interpretation (12;13).  To perform a quantitative analysis, time-
intensity curves such as those shown in Figure 2 must be derived from the images.  
However, if breathholding is not successful during image acquisition, then respiratory 
motion leads to spatial misregistration of the time series of images and time consuming 
image registration requiring some degree of manual supervision is needed to generate 
time-intensity curves. If time-intensity curves are generated, quantitative model-based 
deconvolution methods can be used to estimate perfusion in units of ml/g/min (14) or, by 
solving the modified Kety equations, the flow – extraction fraction product can be 
estimated (15).  For both of these methods, estimates of the input function as well as the 
tissue function are required, where the tissue function corresponds to the signal intensity 
in the myocardium and the input function typically corresponds to the signal intensity in 



the LV cavity blood pool. Semi-quantitative methods use simpler metrics derived from 
the time-intensity curves such as the ratio of the tissue function upslope to the input 
function upslope.  Methods that utilize the input function for image analysis generally 
require the use of a relatively low contrast agent concentration, such as 0.025 mmol/kg, 
since the signal from the LV cavity is not linear with contrast agent concentration for 
significantly higher concentrations.  This constraint limits the signal-to-noise ratio of the 
myocardium during the first pass of the contrast agent. 
 
5. Clinical studies evaluating first-pass MRI for ischemia detection 
 Clinical studies using first-pass MRI for ischemia detection have demonstrated 
promising results.  Using older hardware and pulse sequences, sensitivities and 
specificities were variable, with sensitivities ranging from 65 – 92% and specificities 
ranging from 75 – 100% (16).  Using newer methods, more consistent data demonstrate 
that both sensitivity and specificity are typically around 85 – 90%.  For example, 
Schwitter et al studied 48 patients and 18 volunteers using GRE-EPI first-pass MRI, PET, 
and x-ray coronary angiography.  Using the ratio of the tissue function and input function 
upslopes as an index of perfusion, the sensitivity and specificity of MRI were 91% and 
94%, respectively, compared to PET, and 87% and 85%, respectively, compared to 
coronary angiography (17).  Similarly, Nagel et al studied 84 patients referred for 
coronary angiography at rest and during vasodilation.  Using the same perfusion index 
(ratio of upslopes), the sensitivity and specificity vs. coronary angiography were 88% and 
90%, respectively (12).  Finally, a recent study by Ishida et al achieved a sensitivity of 
90% and specificity of 85% compared to coronary angiography in 104 patients (18). This 
study also showed a significantly higher area under the receiver operator characteristic 
curve for first-pass MRI compared to SPECT for 69 patients who additionally underwent 
SPECT.    
    
6. Current and future directions 
 Interesting new directions include the development of dual-contrast first-pass 
sequences and first-pass MRI at a magnetic field strength of 3T.  In dual-contrast 
sequences (19), a relatively high contrast agent concentration is used and multislice 
imaging is performed.  In addition to sampling multiple slices with a typical sequence, an 
additional slice for the input function is acquired which has altered image contrast and 
lower spatial resolution.  Specifically, the input function slice is acquired using 
parameters where signal intensity is linear with contrast agent concentration for the high 
concentrations found in the blood pool, whereas the remaining slices use parameters 
where signal intensity is linear for the lower concentrations found in the myocardium.  
Lower spatial resolution can be used for the input function slice in order to reduce the 
time spent for input function sampling.  Using this approach, a quantitative analysis can 
be performed using images acquired with high contrast agent concentrations and, 
subsequently, higher myocardial signal-to-noise ratio. 
 The possibility of acquiring first-pass MR images of the human heart at 3T has 
also recently been explored (20).  The advantage of cardiac MR at 3T is that, in general, 
3T provides higher signal-to-noise ratio than 1.5T.  However, cardiac MRI at 3T may 
also generate more artifacts than 1.5T.  Initial findings in normal subjects suggest that 
contrast enhancement may increase by around 70% at 3T compared to 1.5T without a 



significant increase in artifact.  Additional studies are warranted in first-pass MR at 3T 
and in general cardiac MR at 3T. 
 
7. Summary 
 First-pass MRI is a tracer kinetic method for perfusion assessment where rapid 
T1-weighted imaging is used to detect the T1-shortening affect of a contrast agent after 
IV bolus injection.  Detection of demand ischemia and corresponding coronary artery 
stenosis can be accomplished in patients by first-pass MRI during pharmacological 
vasodilation.  Recent clinical studies using these techniques report sensitivities and 
specificities of around 85 – 90%, using x-ray coronary angiography or PET as a standard.  
Areas of continued investigation in first-pass MRI include pulse sequence optimization, 
image analysis techniques, dual-contrast sequences, and imaging at 3T.              
 

 
Figure 1.  Example first-pass MR images of one short-axis slice of a normal subject, with 
time proceeding from upper left to lower right.  The time between each image is one 
heartbeat.  Before the arrival of the contrast agent bolus (upper left), the entire heart 
appears dark.  Over time after an intravenous bolus injection, the contrast agent appears 
first in the right ventricle, then the arteries of the lung, then the left ventricular cavity, and 
finally in the left ventricular myocardium.  Normal myocardium enhances uniformly.   
 



 

Figure 2.  Example time-intensity curves (TICs) from a patient with a significant 
coronary artery stenosis. The TIC from the LV cavity represents the arterial input 
function (AIF), which is used for quantitative or semiquantitative analysis.  Also shown 
are TICs from normal and ischemic regions.  The ischemic region displays reduced 
contrast enhancement.  
 
 
 

 
Figure 3.  Example first pass images at peak contrast enhancement demonstrating a lack 
of contrast enhancement in an ischemic region (arrow) induced during pharmacological 
vasodilation. 
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